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QUANTILE STATISTICAL DATA ANALYSIS

Emanuel Parseni

Department of Statistics
Texas A&M University

Abstract.

This paper presents some reasons why theoretical and sample quantile functions should be routinely used
by contemporary statistical data analysts. Quantile methods are introduced in the context of the exponential
distribution as a fit to the historically important life table data of Graunt (1661). Section titles are: history
of statistics and contemporary textbooks; quantile concepts; identification quantile function; identification
quantile box plot; tail classification of probability laws; goodness of fit plots; IQQ plot; cumulative weighted
spacings function D(u); quantile simulation and distribution of extreme values; comparison quantile function;
nonparametric estimation of probability density; conclusion.

I. History of Statistics and Contemporary Textbooks.

A central problem of statistical data analysis [that was formulated by 19th century pioneers such as
Quetelet (1796-1874) and Galton (1822-1911)) is identifying distributions that fit the data. In The History
of Statistics, Stigler (1986) writes (p. 268) that these pioneers emphasised the use of normal curves to fit
data; they 'proposed that the conformity of the data to this characteristic [normal] curve was to be a sort
of test of the appropriateness of classifying the data together in one group; or rather the nonappearance of
this curve was indicative that the data should not be treated together.'

By 1875 Galton 'had devised a different way of displaying the data. He ordered the data in increasing
order and, effectively, graphed the data values versus the ranks.' Galton used the name 'ogive' for the
theoretical form of this curve for a normal distribution; Stigler writes 'we now call it the inverse normal
cumulative distribution function'. I call this ideal graph a quantile function of the normal distribution; the
graph of ordered data values, denoted X(j; n), versus (j - .5)/n or j/(n + 1), is called the sample quantile
function, denoted Q-(u),0 < u < 1.

This paper presents some reasons why theoretical and sample quantile functions should be routinely
used by contemporary statistical data analysts. They can be used to not only test the fit (or lack of fit) of a
normal distribution to data, but also to describe other general families of distributions and to identify which
distributions fit the data.

Textbooks with titles such as Introduction to Contemporary Statistical Methods omit many important
topics that are actually useful in the theory and practice of statistical data analysis. On my list of important
topics (for which I always look in the index and usually fail to find) are: uniform distribution, exponential
distribution, order statistics, extreme values, quantile function. Traditional introductory textbooks describe
methods based on mean and variance. To qualify as 'contemporary' a textbook adds the following topics:
box plot, fences, stem and leaf plot, trimmed and Winsorised sample. In my opinion quantile function
interpretations are needed for these topics to acquire beauty and utility that will excite students; however
how to do this is not explicitly discussed in this paper.

We introduce the ideas of quantile-based statistical data modeling in the context of the exponential
distribution. Let X be a continuous random variable with distribution function F(x) = Pr[X < x] and
probability density function f(z) = F'(x).

'Research Sponsored by the U. S. Army Research Office Project DAAL03-87-K-0003.
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We call F(x) an exponential distribution with paruneter A if

1 - F(Z) = exp(-Az), X > 0,f(Z) = A exp(-A), z > 0

Its mean 1 equals 1/A, since (for a non-negative random variable)

zf (z)dz = j(I - F(z))dz = f exp(-Az)dz.

The standard exponential distribution is the exponential distribution with mean 1.

2. Quantile Concepts.

The QUANTILE FUNCTION Q(u),O < u < 1, is the inverse z = F- 1(u) of the distribution function
u = F(z). To find x = Q(u) one solves u = F(z).

For an exponential distribution, one obtains z = Q(u) by solving 1 - u = exp(-Az); therefore

Q(u) = (I/A) log(1 - u)-' = P(- log(1 - U))

The mean p of a distribution F or random variable X can be computed from the quantile function Q:

= Q(u)du.

The MEDIAN and QUARTILES of a distribution F or random variable X are defined to be

Q(.5), Q(.25), Q(.75),

the values of Q(u) at u = .5, .25,.75. We define QUARTILE DEVIATION DQ by DQ = 2(Q(.75) - Q(.25)).

For an exponential distribution, Q(.5) = p log 2 = .69p; Q(.25) = p log(4/3) = .29p; Q(.75) = p log4 =
1.39p. The interquartile range Q(.75) - Q(.25) = 1.1p; quartile deviation DQ = 2(Q(.75) - Q(.25)) = 2.2p.

Two important quantile concepts are q(u) = Q'(u), QUANTILE DENSITY FUNCTION, and MQ(u) =
f (Q(u)), DENSITY QUANTILE FUNCTION. For F continuous, F(Q(u)) = u and f Q(u)q(u) = 1. For a
standard exponential distribution, I Q(u) = 1 - u.

Two important universal measures of scale of a distribution are DQ and 1/f(median) = 1/f Q(.5) =
q(.5). They approximately equal each other because DQ is a numerical derivative of Q(u) at u = .5.

How do we apply these concepts to determine distributions that fit data? Given data (sample) compute
a sample quantile function denoted Q-(u). The sample distribution function is defined by 1'(z) =fraction
of sample_< z; the sample quantile function Q'(u) is the inverse of F(u). In terms of the order statistics
X(1;n) _ ... _5 X(n;n) of a sample

Q'(u) = X(j; n)for(j - 1)/n < u < j/n.

One usually adopts a continuous version of the sample quantile function defined by linear interpolation
between its values

O'((j - .5)/n) = X(j; n),j - 1,.. .,n.

When true mean p = 18, and the distribution is exponential, Q(.5) = 12.4,Q(.25) = 5.2,Q(.75) 25.
If similar values hold for the sample analogues of population parameters (denoted by adding a tilde () to
the population notation) one suspects, and conjectures, that an exponential distribution fits.

2
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Table 1. GRAUNT'S LIFE TABLE (1661). OBSERVED PROPORTION AND CUMULATIVE PRO-
PORTION IN VARIOUS INTERVALS OF OBSERVED VALUES OF AGE AT TIME OF DEATH (IN LONDON
1534).

Index Age Interval Proportion Cumulative proportion
j qlu(i - 1)) - Q'( )) p(j '(4I
1 0-6 .36 .36 = r(6)
2 6-16 .24 .f0 = r(16)
3 16-26 .15 .75 = r(26)
4 26-38 .09 .84= r(36)
5 36-46 .06 .9o = r'(46)
6 46-56 .04 .94= r(56)
7 56-66 .03 .97 = r(66)
8 66-76 .02 .99 = r(76)
9 76-86 .01 1.00 = F-(86)

Table 2. GRAUNT's LIFE TABLE SAMPLE QUANTILE FUNCTION.

j 0 1 2 3 4 5 6 7 8 9ffk
U() 0. .36 .60 .75 .84 .90 .94 .97 .99 1.00

q(,(j)) 0 6 16 26 36 46 56 66 76 86

For an illustrative example we consider Graunt's Life Table data (that should be familiar to all students
of statistics). It was published in 1661 by John Graunt, in an attempt to analyse data dealing with age
at time of death in London. The original data was collected by Thomas Cromwell in 1534 from Church of
England records of births and deaths. Graunt is credited with starting modern statistics by creating Table 1.
Brilliant lectures by James R. Thompson of Rice University brought this important data set to my attention.

Prom Graunt's life table (Table 1) one computes sample mean " = 18.22 (in words, the average age at
death was approximately 18 years), Q(.25) = 4.2, q'(.5) = 11.8 (median age at death was approximately 12
years), Q-(.75) = 26, DQ - 43.6. These are found by interpolating the values of the sample quantile function
in Table 2.

To compute sample mean (from grouped data) we use formulas

k
oil - E .5(Q(u(j - 1)) + Q(u(j)))(u(j) - u(j - 1))

j=1

- '( U(u(j)) - q'(u(j - 1))(1 - .5(u(j - 1) + u()))
j=1

The second formula can be interpreted using the fact that I - u is the standard exponential density quantile.

It does not seem to be customary in the literature to discuss which distributions fit the data that one is
analysing (here Graunst's life table). Techniques are discussed in this paper which can guide the statistical
data analyst to identify and test standard parametric distributions (such as the exponential distribution) as
a smooth distribution that fits the sample. We discuss the respective roles: (i) F(z), sample distribution
function, (ii) q(u), sample quantile function, (iii) F^(z), smooth distribution estimated from data (for
Graunt life table, an exponential distribution with mean 18.22), (iv) Q^(,), smooth quantile function, (v)
D'(u) - FQ(u)), comparison quantile function, (vi) D'(u), cumulative weighted spacings, tests constancy
of ratio of derivatives Q"(u)/Q'(u), (vii) QI(u), identification quantile function. The statistician's problem
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is to develop a framework which explains how and why to use these functions to develop graphical and
numerical diagnostics which guide us to identify distributions (such as the normal or exponential) that fit
the data.

3. Identiflcation Quantile Function.

The median, which we henceforth denote MQ - Q(.5), is a universal measure of location. It is superior
to the mean by the criterion of being more robust (resistant to outliers in the data whose presence will in
fact be detected by the identification quantile function). But we recommend the median not because of its
robustness but because it forms one of the tools of quantile based methods of statistical data analysis.

Statisticians who favor (or at least teach) mean and standard deviation as measures of location and
scale use them to standardize the data by subtracting the mean and dividing by the standard deviation.
The quantile based analogy to standardization is to transform the random variable X to

XI = (X - MQ)/DQ

whose quantile function is
QI(u) = (q(u) - MQ)/DQ

We call QI(u) the Identification Quantile Function. Our motivation for introducing this function is that
it is approximately equal to the unitized quantile function

Ql(u) = (Q(u) - MQ)/Q'(.5) = Q(.5)(Q(u) - MQ).

which has value 0 and slope 1 at u = .5. The probability density f(z) corresponding to the unitized
quantile function has been normalized so that f(median)= 1. The unitized normal probability density is
f(z) = exp(wz2 )

Universal measures of location and scale are MQ and DQ. Diagnostic measures of skewness are

QI(.25), QI(.75), QIM = .5(QI(.25) + QI(.75)), -. 25/QI(.25), .25/Q1(.75);

note that always QI(.75)-QI(.25) = .5. Diagnostic measures of (left and right) tail behavior are QI(.01) and
QI(.99). A combined measure of tail behavior (useful for probability density estimation) is QI(.99)-QI(.01),
called the identification quantile range.

4. Identification Quantile Bocx Plot.

An identification quantile box plot is a plot consisting of a box from QI(.25) to QI(.75) with a midline
at QI(.5) = 0 and a cross at QIM. Fences are defined to be max(-1,QI(0)) and min(1,QI(1)). Lines
are drawn from identification quartiles to fences. Data values outside the fences are considered outliers or
out-and- outliers, depending on whether they are interpreted as representing long tails or blunders. One
also indicates the location of (sample mean-MQ)/DQ. The values of identification quartiles and fences are
recorded on the plot.

5. Tail Classification of Probability Laws.

Representations of the density quantile function behavior as u tends to 0 or I is used to provide a
quantitative index of tail behavior which we call the tail exponent. It is used to qualitatively classify tail
behavior in three types, called short, medium, and long. Medium tails are further classified in three groups:
medium-short, medium-medium, medium-long; a good summary of these concepts introduced by Parsen
(1979) is given by Schuster (1984).

These five groups reduce to three groups (short, medium, long) when expressed in terms of hazard rate
functions (decreasing, constant, increasing). The right and left hazard functions are respectively defined by

hi(z) = f(r)/(i - F(z)), ho(z) = f(z)/F(z).

4



The right and left hasard quantile functions are defined

hi QMv = f QMAIs) - U), hoQ(U) = f QMIU).

Our classifications of tail behavior can be empirically related to the behavior of the identification quantile
function as u tends to 0 or 1. The left tail is classified: 0 > QI(.01) > -. 5, short tail; -. 5 > QI(u) > -1,
medium-short; -1 > QI(u), medium-long and long tail. The right tail is classified short, medium short, or
long according as QI(.99) < .5, .5 < QI(.99) < 1, 1 < QI(.99).

For Graunt's Life Table, QI(.25) = -. 17, QI(.75) = .33, QIM = .5QI(.75) + QI(.25) = .08, QI(.01) =
-. 27, QI(.99) = 1.47. Experience with typical values of these diagnostic measures for various standard
frequently encountered distributions leads one to conjecture that the sample distribution function &'(z) of
the data in Table 1 is fit by an exponential distribution F^(z) with a suitable estimated mean ;i.

6. Goodness of Fit Plots.

To evaluate the fit of a model described by 1r(z) or Q^(u) to data described by F'(z) or Q(u) one
has a bewildering number of options. The theory of goodness of fit tests is concerned with the theoretical
study of the many test statistics available, and offers little practical guidance on which methods to use in
practice. This extensive literature can only be briefly illustrated in this paper, with emphasis on graphical
comparisons.

One can compare plots: (1) F(z) and FY(z) vs. z, on the same graph; (2) Q-(u) vs. Q^(u), called Q-Q
plot; (3) LT(u) = F-(Q-(u)) vs. u, called D-uniform plot (it is equivalent to a plot of F^(z) vs. F(x) called a
P-P plot). We recommend variants of the last method. One can interpret D-(u) as sample quantile function
of the transformed random variable U^ = F(X). The goodness of fit problem is transformed to tests of fit
of U^ by a uniform (0,11 distribution and by estimation of the true quantile function, denoted D(u), of U^.
We call DT(u), 0 < u < 1, a sample comparison quantile function.

When F is exponential, D-(u) =- I -exp(-Q-(u)//p^). Its values for Graunt's life data is given in Table
3. Figure 2 presents a IQQ plot as a test of fit of Graunt's life table by an exponential distribution. Figures
3-6 present plots on same graph of sample and smooth distributions. The combinations are F'(z) and Fl(z)
vs. z (Figure 3), Q-(u) and Q^(u) vs. u (Figure 4), Q-(u) vs. Q'(u), a Q-Q plot (Figure 5), and r(z) vs
F(x), a P-P plot (Figure 6) which also plots D(u) = F1(Q-(u)). Figures 6 and 7 present D(u) plots as tests
of fit of Gaunt's life table by an exponential distribution; D-(u) = cumulative weighted spacings in Figure 7.

T. IQQ (Identification quantile - quantile) Plot.

To test whether a sample is normal or exponential, one tests the hypothesis Q(u) = p + oQo(u) by a
scatter plot of (Qo(u(j)), Q(u(j'))) at suitable values u(j),i = 1,..., k, in the interval 0 < u < 1. This plot,
called a Q-Q plot, is judged visually for linearity.

We prefer to use what we call a IQQ plot; it is a scatter diagram of (QoJ(u(j)), Q((u(j))) with a grid
of lines which may make it easier to judge visually for linearity. A IQQ plot for Graunt's life table is given
in Figure 2.

8. Cumulative Weighted Spacings Function D(u).

Users of QQ and IQQ plots report that they are difficult to interpret. I propose that one should prefer
plots that are graphs of functions such as various functions D(u),0 < u < 1, which can be defined to measure
the 'distance' between two distributions.

To compare Q(u) with p+aQo(u) we recommend comparing their derivatives (equal to q(u) and cqo(u)
respectively). Since a is unknown we test for constancy the ratio q(u)/qo(u) q(u)foQo(u); equivalently
test the deviation from I of

d(u) q(u)foQo(u)/ao,

5



ao = q(t)foQo(t)dt.

We call d(u) a weighted spacings function, since spacings X(k; n) - X(k - 1; n) are the building blocks of
estimators of q(u).

One approach to testing d'u) is to estimate and test the deviation (from the uniform function Do (u) = u)
of the cumulative weighted spacings function

D(u) = fo" d(t)dt

The sample analogue of d(u) and D(u) to test exponentiality is: for u(j - 1) < u < u(j), d(u) = d(j),

d'(j) = (Q-(u(j)) - Q-(u(j - 1)))(I - .5(u(j - 1) + u(j)))/p';

D'(u) linearly interpolates its values D7(u(j)) = d'(1) +... + d'(j). Note that a0 = p'.

Table 3. GRAUNT'S LIFE TABLE Q', Q-, F-, F'(Q-)= D_ FOR FITTED EXPONENTIAL F(z) =
1- exp(-z/p-),p = 18.2, D-(u) CUMULATIVE EXPONENTIAL WEIGHT SPACINGS (CUMWTSPAC).

S Q(U(j)) Q'(U(j)) rqT(u()) F^Q'(u(j)) D(u(3"))CUMWTSPAC

0 .09 0 .00 .00 .00
1 8.13 6 .36 .28 .27
2 16.69 16 .60 .58 .56
3 25.26 26 .75 .76 .73
4 33.39 36 .84 .86 .85
5 41.95 46 .90 .91 .92
6 51.26 56 .94 .95 .96
7 63.89 66 .97 .97 .986
8 83.91 76 .99 .98 .997
9 96.54 86 1.00 .99 1.00

Figures 6 and 7 show how we plot D-(u) for comparison with Do(u) = u. In addition to the graphical
diagnostic of the plot, there are many numerical diagnostics that can be performed.

9. Quantile Simulation and Distribution of Extreme Values.

A general distribution function F(z), -oo < z < oo, is a non- decreasing function continuous from the
right. Its quantile function (or inverse distribution function), defined by

Q(u) = inf(z : F(z) > u),

is a non-decreasing function continuous from the left. It is an inverse under inequality; for any z and u

F(z) uif and only ifz > Q(u).

An important property of quantile functions is a formula for functions of random variables. THEOREM.
Assume g is non-decreasing and continuous from the left. Then Y = g(X) has quantile function

Qy(u) - g(Qx(u)).

6



One can represent X in terms of a uniform 10,11 random variable U by X = Q(U) since Q(U) has
quantile function Q(Qu(u)) = Q(u).

When F is continuous, one can transform X to U, a uniform 10,11 random variable, by U = F(X) since
F(X) has quantile function F(Q(u)) = u.

A random sample X(1),..., X(n) of X can be simulated by generating a random sample U(1),..., U(n)
of U, and forming X(j) = Q(U(j)). This process, illustrated in Figure 8 for the normal and Cauchy distribu-
tions, demonstrates that the quantile function provides a powerful graphical representation of a distribution
because of the following equivalence: (1) a random sample of X, (2) observing Q(u), quantile function of
X, at a random sample of points on the unit interval. To compare two distributions, such as the normal or
Cauchy, one way is to plot (as in Figure 8) graphs of their identification quantile functions plotted on the
same scale (the longer tailed one will have to be truncated at a suitable value).

The representation of X in terms of U by X = Q(U) provides a quantile approach to the distribution
theory of order statistics and extreme values. Let X(l; n) < ... < X(n; n) be the order statistics of a
random sample X(1),... ,X(n). The kth order statistic X(k; n) has the same distribution as Q(U(k; n))
where U(k; n) is the kth order statistic of a random sample from uniform 10,11.

10. Comparison Quantlie Function.

A quantile based concept that unifies parameter estimation and goodness of fit hypothesis testing
procedures is the comparison quantile function D(u) = F(G- I (u)) which compares two distribution functions
F(z) and G(x). The comparison quantile density is

d(u) = D(u) =

The Kullback information divergence can be evaluated by

I(G;F) = - (log(f (z)g(z))g(z)d= -logd(u)du

The graph of d(u) provides insight into the rejection method of simulation. One seeks to generate a
sample X(1),..., X(m) from F as an acceptable subset of a sample Y(1),..., Y(n) from G(x). THEOREM.
Assume that D(0) = 0 and there is a constant c such that d(u) :_ c for all u. Generate two independent
uniform 10,11 random variables U(I) and U(2). Acceptance and rejection rule: If

U(2) !<d(U(1))c,

then accept Y - G-(U(1)) as an observed value of X. Otherwise reject Y. (Continue by generating two
more uniform 10,11 random variables). The probability of acceptance is I/c.

The relation between two distributions F and G is best understood by a plot of U2 = d(ui).

This plot can be used to graphically describe the rejection rule of simulation and to prove it. Verify that
the area under the curve from u1 = 0 to ul = C(x) equals D(G(x)) = F(z); the event that U(1) < G(x)
and U(2) < d(U(1))/c has probability F(x)/c; the event that X < z can be shown to have probability F(x).

11. Nonparametrlc Estimation of Probability Density.

To identify distributions that fit data, one can use parametric models such as the location-scale parame-
ter model Q(u) = I + uQo(u), or one can nonparametrically form estimators f"(x) of the probability densityfunction (see Silverman (1986)). We consider only the kernel estimator

r(z) = (1/n) Z(lhK(z -

7



where K(z) is a probability density function and h is a bandwidth to be selected.

For K we recommend (Parsen (1962)) the 'Parson window' which is the probability density of the sum
of four uniforms (4/3) - gs + z, 0<z< .5

K() = (8/3)(1 -Z). . < Z <
( 0, 1 <

g(-z), Z |

As a first choice to consider for h, by adapting Silverman (1986), p. 47, we recommend

hopt = K(O)DQn- 2

To accept or reject the goodness of the value of h chosen we judge the deviation from uniformity of the
comparison quantile function D-(u) = r(Q-(u)). We evaluate this function at u = (j- .5)/n by F^(X(j; n)).
Other chokes of hopt are multiples of hopt based on diagnostics of the tail behavior of the distribution, given
by QI(.99) - QI(.01). The deviation of D(u) from uniformity is used to guide the search for the best value
of h for the data being analysed.

The details of this procedure for choosing a kernel probability density estimator cannot be given in this
paper. It is best explained by examples of the quality of nonparametric probability density estimators to
which it leads for famous data sets (Buffalo snowfall, Yellowstone geyser eruption times) which are used as
test cases for density estimation methods (compare Silverman (1986)).

12. Conclusion.

The process of analysing a univariate sample can be viewed as fitting a smooth distribution F^(z) to
a sample distribution r'(z). The process of comparing F^ and R" requires a knowledge of the theory and
practice of quantile functions. 'In order to get to the fruit of the tree you have to go out on a limb' is a
proverb that statisticians may take as an omen that they should explore the quantile limb which is always
lurking.
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Titles of Figures

Figure 1. Identification quantile plot of Graunt life table.

Figure 2. Identification quantile-quantile (IQQ) plot of Graunt life table vs. exponential distribution.

Figure 3. F(z), Graunt life table sample distribution (dot) and F(z), exponential mean 18.22 distribution
(solid).

Figure 4. Q'(u), Graunt life table sample quantile (dot), and Q-(u), exponential mean 18.22 quantile
(solid).

Figure 5. Q-Q plot of Q-(u) vs Q-(u).

Figure 0. P-P plot of FP(z) vs F'(x), same as plot of D'(u) = F'(Q'(u)), Do(u) = u is also plotted (dots).

Figure 7. D-(u), cumulative exponential weight spacings (solid); Do(u) = u (dot).

Figure 8. Random sample from normal (top) and Cauchy (bottom) represented as values of quantile
function Q(u) at random sample from uniform [0,11.

Figure 9. Comparison quantile density d(u) = D'(u), D(u) = GF-(u), F normal, G Cauchy, d(u) bounded
(top), F Cauchy, G normal d(u) unbounded (below).
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